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J .  Phys. A: Math. Gen. 21 (1988) 2061-2073. Printed in the L‘K 

Approximate master equations for an exactly solvable 
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Theoretical Chemistry Department, University of Oxford, 1 South Parks Road, Oxford 
OX1 3TG, U K  

Received 29 June 1987. in final form 14 December 1987 

Abstract. Approximate master equations for the Friedrichs model are discussed. The 
approximate Zwanzig equation predicts behaviour very close to the exact one, but presents 
only minor simplifications of necessary calculations, while an approximate convolutionless 
equation usually gives a reasonably good account of the behaviour of exact solutions and 
simplifies the calculations significantly. It is also shown that the van Hove and Markov 
limits give an incorrect asymptotics in a physically interesting case. 

1. Introduction 

Equations obtained from the Liouville-von Neumann equation 

d,p(t) = -iLp(t) = -i[H, p ( f ) ]  (1.1) 

where p (  t )  is the density operator of a given physical system, H its Hamiltonian and 
L the corresponding Liouvillean (d, stands for the derivative with respect to time, and 
we assume thoroughout this paper that h / 2 v  = l ) ,  by splitting the density operator 
into ‘relevant’ and ‘irrelevant’ parts by means of a projection superoperator D 

are called exact master equations. They describe the time evolution of the ‘relevant’ 
part pd ( f ) ,  and thus provide another theoretical description of the dynamics of quantum 
systems. However, they also serve as a starting point for the derivation of many 
approximate equations, which in turn act as powerful tools in a variety of calculations. 
The purpose of the present paper is to introduce some approximate (in the sense of 
the weak coupling limit) master equations for a simple and well understood quantum 
model, namely that of Friedrichs 1948, and to compare the results obtained with exact 
solutions, or with solutions obtained in different ways. We hope that such an analysis 
will in future encourage making similar approximations while solving more complicated 
problems. 

There are several types of exact master equations. An equation with a convolution 
was introduced by Zwanzig (1960) and independently by the Brussels school (RCsibois 
1963), and since then it has been used by many authors with considerable success. 
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The equation is usually solved in the so-called Markov limit (see e.g. Haake 1973, 
Agarwal 1974). Although some rigorous criteria for the existence of Markovian 
approximations of non-Markovian dynamical equations have been formulated (see 
e.g. Spohn 1980), only rarely do they appear to be checked by authors, who usually 
assume that only some qualitative ones, like for instance the assumption that relaxation 
times of a thermal bath are much smaller than those of a 'relevant' subsystem, are 
satisfied. Perhaps as a consequence of this practice, or as a consequence of the extreme 
complexity of the Zwanzig equation without a Markovian approximation that makes 
it almost impossible to perform any calculations even in the lowest-order approxima- 
tion, the Markov limit is taken almost whenever a master equation with a convolution 
is being used. However, it has been already reported (e.g. eapek 1983) that in this 
limit the equation predicts an incorrect long-time asymptotics, and we give further 
evidence on this point in the present paper. There are also exact master equations 
without a convolution. These are usually valid if and only if certain superoperators 
can be proved to exist. In this paper we use a formalism introduced by Fuliriski (1967), 
or rather its simplest form (Fulibski and Kramarczyk 1968). Perhaps another convol- 
utionless formalism, namely that of the 'memory effect renormalisation' (Hashitsume 
er a1 1977), is more popular, but it has been shown to be equivalent to the one we use 
(Gzyl 1981), though their asymptotic properties might be different. 

Master equations have been frequently associated with the famous van Hove limit 
(van Hove 1955; see also Loss (1986) for further bibliography and a comprehensive 
discussion), another procedure leading to weak coupling approximations. Yet it has 
been recently shown (Braun and Mello 1986), in a slightly different context, that this 
limit may obscure some important features of the dynamics of a physical system. We 
find some more evidence on this point as well. 

In § 2 we present a convolutionless master equation for the Friedrichs model, and 
then we introduce an approximate form of the equation. In § 3 we do the same with 
an equation with a convolution. In subsequent sections we present some model 
calculations, rather trivial in § 4, and more elaborate and perhaps more interesting, 
because they concern a physically important case of photodissociation, in § 5 .  We 
draw our final conclusions in 0 6. 

2. Convolutionless master equation 

In the present paper we use an exact convolutionless master equation which has been 
derived under the assumptions that both the Hamiltonian H and the projector D are 
time independent. The equation is (Fuliriski and Kramarczyk 1968) 

d , ~ ,  ( = [d rN( t, t o )  I N-' ( t, t o )  [ ~ d  ( t + Pnd  ( t o )  I (2.1) 

N (  t, to)  = 1 + D [ Z (  f ,  to)  - 13. (2.2) 

z(4, f J P ( h ) = P ( t l +  f 3 - t J  (2.3) 

where 

D is the projector (1.2), Z( t, to) is the time evolution superoperator 

and to is an arbitrarily chosen moment of preparation of the system. The inverse 
superoperator N-' exists if and only if the condition 

(2.4) lim [ 1 - N (  t, to) ] "  = 0 
n-cc 
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holds in some sense and, if this is the case, 
cc 

N - ' ( t ,  t o )  = c [D-DZ( t ,  to)lk. 
k = O  

The continuous version of the Friedrichs Hamiltonian is 

H =  &+14)(41+] w/w)(wldw+A j [ V ( w ) l 4 ) ( w l +  V*(w)lw>(4lldw (2.6) 

and both the orthonormality and the completeness of the basis are customarily assumed. 
( 4 )  can be interpreted as the upper state of a two-level atom, while lo) are the states 
of a 'bosonic' field (namely photons or phonons) that the atom interacts with, A being 
the coupling constant. It is natural to choose the state 14) as the 'relevant' part of the 
system (i.e. associated with the macroscopically relevant information about the system), 
and we put 

(2.7) 

p + ( t )  is the probability that the state 14) is being occupied. The condition (2.4) can 
be now interpreted as 

DP(t) = P d  ( t )  = P++ ( t)l4)(4 1 = P+ ( 4)( 4 1. 

n-cc lim [ 1 - ~ ( t ,  to)]"14)(41=o. (2.8) 

Because for any operator A 

Z( t, t0)A = U (  t - to)AUt( t - to) 

U (  T) = exp( -iTH) 

(2.9) 

(2.10) 

is the evolution superoperator and U' stands for its Hermitian conjugate, after some 
simple algebra one can obtain that 

(2.11) 

and the condition (2.8) is obviously satisfied. The explicit form of the equation (2.1) 
for the Friedrichs model can now be straightforwardly derived, but for the sake of 
simplicity we impose the spontaneous emission initial conditions 

where 

D(Z - 1))4>(41= [ I  U+@(t - toll ' -  1114>(4l 

P+(O) = 1 P n d ( 0 )  = 0 (2.12) 

under which the inhomogeneous term in (2.1) vanishes. From (2.5) and (2.11) we now 
have (hereafter we put to = 0 for simplicity) 

N W ( 4 I  = I U++l-'l4)(4l* (2.13) 

The superoperator Z itself satisfies the Liouville-von Neumann equation 

d,Z( t ,  to) = -iLZ( t, to) (2.14) 

and from the definition (2.2) we now have that 

d ,N(  t ,  to)  = -iDLZ( t ,  to) .  (2.15) 

It can now be shown by some elementary, though rather lengthy calculations, that 

d,NI4)(4I = - i A  d5[v(5)  Uc+UL+ - V*(5) U++ U;c1/4)(41. (2.16) 
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Putting the results together we arrive, after some more algebra, at the conclusion that 

where 

(2.18) 

Note that (2.17) is a number equation. This comes as a consequence of the fact that 
the projectors I ~ ) ( c # I ,  being the only remaining operators in the resulting master 
equation, have been dropped. It is also a matter of simple algebra to check that 

Pd(t) = I u,,12 (2.19) 

is the formal solution of (2.17), as one may have expected. 
So, as one can easily see, the forms of both the equation (2.17) and its solution 

(2.19) depend on matrix elements of U. Only on rare occasions can these be obtained 
from the definition (2.10), and one rather calculates them from the equation 

d,U(t)  = - i H U ( t )  (2.20) 

which in the present case splits into the following set of equations: 

d,U+, = -iE,U+, - i A  d( V([)U, ,  (2.20a) 

(2,206) 

I 
d,U,, =-iwU,,-iAV*(w)Ud, 

which can be 
get 

solved by means of the Laplace transformation. For the transforms we 

-I 

fi, ,(s)=(s+is,+A2 dtlV([)12(s+i6)-1) ( 2 . 2 1 ~ )  

f i U t ( s )  = - iAV*(w)(s+iw)- ' f i , , ( s ) .  (2.21b) 

The above equations enable us to find the exact solution (2.19) (provided that the 
transformation can be inverted), but they also can serve as a starting point for obtaining 
a perturbation expansion of (2.17). In the present paper, for reasons to be explained 
below, we restrict ourselves to the lowest-order approximation, but the procedure we 
propose can be carried on further and can give an approximation of any order required. 

If A is sufficiently small, the transforms (2.21) can be expanded as power series in 
A. If we keep only the least non-vanishing terms, we get 

U,,( t )  = exp(-is,+t) + O(A2) ( 2 . 2 2 ~ )  

U,,(?) =AV*(w)[exp(-iwt)-exp(-ie,t)](w - ~ , ) - l + O ( h ~ )  (2.22b) 

where the transforms have been formally inverted. From (2.17) and (2.18) we now get 

dw/V(w)l* s i n [ ( w - ~ ~ ) t ] ( w - s , ) - ' p , ( t )  (2.23) 

or 

dwlV(w)12{1 -cos[(w - E , ) ~ ] } ( w - E ~ ) - ~  
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It is conceivable that the (approximate) behaviour of p+(t)  can be estimated from 
(2.23) or (2.24) even when the (exact) transforms (2.21) cannot be inverted. We shall 
see in $0 4 and 5 that this approximation usually predicts a correct asymptotics of 
systems under consideration. 

It is also a matter of simple algebra to show that instead of (2.21) we can put 
r rr 

d,x( t )=-A2 J dwlV(w)/’J dt‘x( t ’ )  e x p [ - i ( w - ~ ~ ) ( t - t ’ ) ]  (2.25) 
0 

where 

x(  t )  = exp(is,t) Ud+( t ) .  

Note that 

(2.26) 

(2.27) 

and that x(0) = 1. 

3. The Zwanzig method 

Now we switch to equations with a convolution, or as 
memory. We use here the Zwanzig equation (Zwanzig 1960) 

is CoIillliOnly called, with 

d@d( t )  = -iDLpd( t )  - iDL exp[-it( 1 - D)L]p,,d( t o )  

- 10 dt’ DLexp[-it’(1- D)L]( l -  D)Lpd( t -  f ’ ) .  (3.1) 

For the Friedrichs model with the projector D defined by (2.7), and with the initial 
conditions (2.12) imposed, the second term in the equation vanishes and we have 

Let us define (A being an operator) 

(3.3b) 

(3.3c) 

(3.4) 
It is easy to check that these superoperators satisfy the following Zwanzig identities: 

DLD = 0 (3.5a) 

D L s =  LsD=O (3.5b) 

DLB = LBD = 0. (3.5c) 
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The first of these identities causes the first term in (3.2) to vanish, while the other two 
enable us to simplify the only lasting (and most complicated) term. After some algebra 
we obtain that 

d,pd(r)l+)(+l = - A 2  1‘ dt ’p+( t -  t’)DLs, exp[-it’(1- D)L] 
0 

x d 4  V*(w)b)(+l- V ( ~ ) b ) ( ~ l l .  (3.6) 

Equation (3.6) is still exact. Note that further calculations with the full superoperator 

exp[-it(1 -D)L]  (3.7) 
would probably be extremely difficult, and that (3.6) is at least second order in A. The 
approximation we are going to apply reduces to replacing (3.7) by 

exp[-it(1 -D)(L,+L,)] =exp[-it(L,+L,)]. (3.8) 
A similar procedure was first carried out by Zwanzig (1964), who has also pointed out 
that any calculations in higher than second order of perturbation expansion of (3.1) 
would most probably be as complicated as solving the exact equation. For that reason 
and because we aim at comparing different types of formalisms, we have restricted 
ourselves to the second-order approximation in the previous section. 

Now we can express the exponent as a power series and interchange the order of 
summation and integration over W .  Because 

( L S L B  - L B L S ) I + ) ( W  I = 0 (3.9) 

( L S L  - L 3 & ) l W ) ( + l  = 0 (3.10) 

we can use the Newton rule to compute expressions (L ,+L, )” l+) (wl  and (Ls+ 
L B ) n l ~ ) ( + l ,  and finally after some more algebra we obtain that 

r t  r 

Because the projectors I+)(+[ are the only operators that appear in (3.11), we again 
can drop them and arrive at 

(3.12) J d,p,( t )  = -2A2 dt’ p + (  t - t ’ )  dW/ V( w ) / ~  COS[( w - E + )  t’] J o’ 
which is again a number equation. 

integrations-and the uniform convergence of 
Equation (3.12) resembles (2.25) very much. If we could interchange the order of 

dolV(w)12cos[(w-~+)t]  (3.13) 

is sufficient for the legitimacy of such a procedure-the resemblance would be even 
more apparent. Both (2.25) and (3.12) are integro-differential equations, and the kernel 
of the latter is equal to the real part of that of the former, times two (note that p + ( t )  
must be real while x( t )  can be complex). It means that the approximate p + (  1 )  obtained 
from (3.12) should be very close to the exact one, but it also means that the second-order 
Zwanzig approximation provides only minor simplifications to the calculations, and 
it is very likely that one may face the same difficulties while solving either of the two 
equations. 

i 
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If the integral (3.13) actually uniformly converges, we can make a further approxi- 
mation, namely to neglect the t’ dependence of pb in (3.12). If we do this, we again 
obtain (2.23), i.e. the convolutionless master equation in the second-order approxima- 
tion. Thus it looks as if the approximate Zwanzig equation were ‘less approximate’ 
than the approximate convolutionless one. 

4. Simple examples 

The two examples we are going to give in this section are rather artificial and unsophisti- 
cated, but we think one may still learn some interesting features from them. As one 
can see, the potential function V ( w ) ,  or rather its square modulus, is what has to be 
specified, along with the spectrum of Iw).  Let us assume that 

IV(w)l ’= ( Y / V ) [ ( W  - E + ) ’ +  y21-’ 

p+( t )  = exp(-yt)[cosh(at) + (y /2a )  sinh(at)]* 

(4.1) 

and that w E (-CO, +CO). The exact solution (2.19) now becomes 

(4.2) 

where 

a’ = ay2 - A’. (4.3) 

This, but not the subsequent approximate solutions, may be treated merely as a 
quotation, because this particular example has been already examined by many authors 
(Middleton and Schieve 1973, Frankowicz and Jgdrzejek 1978). Now let us examine 
various approximations. 

The solution of the approximate convolutionless equation is 

p + (  t )  = exp( -2A’y-’t) exp{2(A/ y)’[ 1 - exp(- yt)]} (4.4) 
and the approximate Zwanzig equation 

d,pm( t )  = -2A ’ lo‘ dt’ p+ ( t - t ’ )  exp( - yt’) (4.5) 

leads to 

p+(t)  = e x p ( - y t ) [ c o s h ( b t ) + ( y / 2 b )  sinh(bt)] (4.6) 

(4.7) 

A + 0, t + 00 such that A 2 t  = fixed (4.8) 

p+(t)  = exp(-2A2y-’t). (4.9) 

where 
b 2 = l  ’-2A2. 

4 Y  

It is also easy to check both the Markov limit of (4.4) and the van Hove limit 

of any of the above solutions give 

We can see that all of these solutions describe very similar behaviours of the 
probability p + (  t )  and that the approximate Zwanzig solution (4.6) is indeed very close 
to the solution (4.2), the exact one, not only in form, but also in characteristic features: 
even when the exact solution starts to exhibit damped oscillations for values of A 
greater than fy, the approximate solution does the same, though for slightly greater 
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values of A, while one might have expected the approximation to break down completely 
for such large values of the coupling constant. The approximate convolutionless 
solution (4.3) provides a very good account of the behaviour of the actual solution 
(4.2) for small values of A, and the Markov (or van Hove, because in this case they 
lead to the same result) limit, though coarse grained, still gives a fairly good long-time 
asymptotics. 

We have not managed to find the exact solution in our second example, but 
nevertheless we give it because it can remind our reader-and ourselves, too-that not 
all approximations work well. 

We put 

IV(w)l '= (m- ' { l  -cos[(@ -&$)7]}(lr) - E , $ - *  (4.10) 

and again w E (-CO, Sa).  Equation (2.25) now becomes 

d,x(r)=-A2T-'  {o 'd t 'x ( t -  t f ) ( 7 - t ' ) 6 ( T - t ' )  (4.11) 

where 6' is the Heaviside step function. For the Laplace transform of x ( t )  we obtain 

:(s) = s2{s3+a2[s+exp(-s ) -  I]}-' (4.12) 

where we have decided to measure time in the units of 7, and 

U = A T  (4.13) 

is a dimensionless constant. It is easy to check that s = 0 is the only real zero of the 
denominator on the right-hand side of (4.12). 

The approximate Zwanzig equation leads to 

;$(s) = s2{s3 + 2u2[s + exp(-s) - I]}-'. (4.14) 

As we have mentioned, we have not managed to invert these transforms. Note, however, 
that if a = 2 k ~  ( k  being an  integer), the right-hand side of (4.12) has simple poles at 
points s = &2k.rri, and hence the solution (at least asymptotically) behaves periodically. 
The approximate Zwanzig solution exhibits an  analogous feature. On the contrary, 
the solution of the approximate convolutionless equation for the potential (4.10) is ( t  
still in units of 7 )  

p b ( t )  = e x p ( b * d ( t ) )  (4.15) 

where 

d (  t )  = 3 t2 -  t 3  

d (  t )  = 3 t  - 1 

for 0 s  t s 1 

for t > 1 

( 4 . 1 6 ~ )  

(4.16 b )  

and pm( t )  tends to zero monotonically. One must then remember that some important 
effects may not be observed if a problem is solved with the aid of an  approximate 
master equation (note though that A = ~ T / T  hardly can be regarded as a small number). 

5. Another example: photodissociation 

Our final example is perhaps more interesting than the previous two because it has 
something in common with a situation that can be observed in a possible experiment. 
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As is widely known, photodetachment of electrons from negative ions can be described 
within the framework of the Friedrichs model, provided that I V(w)12 behaves like 
w L + ” 2 ,  where L is the angular momentum of continuum (Wigner 1948). We choose 
the s wave and put 

( V ( w ) / ’ =  r - ’ [ p ( w - & + ) l 1 / 2 ( w - & + + P ) - l  (5.1) 
and we assume that w E [ E + ,  +a). It is because this particular model has already been 
investigated (Rzqiewski et a1 1982) that we have chosen it: this provides us with an 
opportunity to test our formalism in a case where an exact solution is already known 
and which belongs to a class of a great interest. (We must admit though that our 
model is slightly simplified, and consequently we discuss not a genuine photodetach- 
ment, but rather a spontaneous emission with the interaction (5.1).) 

d,x(t)  = - A 2 r - ’  [ dw[p(w - E + ) ] ’ / ~ ( w  - E+ + p ) - ’  

The exact solution satisfies the equation 
cc 

J €6 

x ~ o ‘ d t ’ x ( t - t ’ )  exp[-i(w-~+)t’] .  (5.2) 

If we decide 
leads to 

where 

to measure time in units of p- ’ ,  and appropriate change of variables 

r t  r x  
d,x( t )  = - wr-’ J . dt’ x (  t - t’) J z”2( 1 + z)-’  exp( -it’z) dz (5.3) 

0 0 

w = A2p-’  (5.4) 
is an effective coupling constant. The integral over z can be carried out explicitly 
(Gradshteyn and Ryzhik 1980). We get 

d,x(r)=-:wr-”’ d t ’x( t - t ’ )  exp(-it’)I‘(-& -it’)  (5.5) I: 
where T ( a ,  b )  denotes the incomplete gamma function (ErdClyi et a1 1953). For the 
Laplace transform of x we get (ErdClyi et a1 1954) 

f ( s )  = (s’” + (-i)”2)[s(s’/z+ (-i)’/’) + j’/’w]-’ 

x(  1) = i r - I / 2  cj U exp[-u2/(4t)] exp(y,u) du (5.7) 

h ( z )  = ( z  + ( -i)”’)[z2(z + (-i)I’’) + i ’ /2wl-’  

(5.6) 
and finally (ErdClyi et a1 1954) 

I = ‘  0 

where y, are poles of the function 

(5.8) 
and c, are the corresponding residua. After some simple algebra, (5.7) becomes 

3 

x(  t )  = cjyj exp( yf t )  erfc(-yjt’/2) 
j = 1  

(5.9) 

where erfc(a) means the complex error function (ErdClyi et a1 1953). From the 
asymptotic properties of this function one can see that the decay of the bound state 
14) is essentially non-exponential. Actually, the leading term in p + (  t )  is proportional 
to tf3. 
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These results are in full accordance with those of Rzgzewski and his collaborators. 

The approximate Zwanzig equation in the present case is 
Now let us see what the approximate solutions look like. 

dfp+( t )  -!WT-”~ dt’p+( t - t ’ )  lo‘ 
x [exp( i t’)r( -4, i t’) + exp( -i t’)r( -4, -i t  ’)I. (5.10) 

This equation also can be solved by means of the Laplace transformation, and its 
solution has the general form of (5 .9 )  with the only difference, apart from that of 
different coefficients, being that the solution of (5.10) is a sum of four, instead of three, 
terms proportional to erfc(-constant x Obviously, this would give the same 
asymptotics as the exact solutions. 

Let us, however, look at the Markov limit of (5.10). The formal expression for the 
limit has the form 

d,p,( t )  = -iw.rr-’/‘p+(t) limf( t )  (5.11) 
f+co 

where 

f ( t )  = dt’[exp(it’)r(-$, it’)+exp(-it’)r(-4,-it’)]. lof 
The Laplace transform of this function is (ErdClyi et a1 1954) 

T(s) = 23/2.rrs-1/2(s2+ i ) - ~ [ ~  - (2s) i /2+ 11 

and hence 

f(t) = 21/2t-3’2 lom du U exp[-u2/(4t)] 

x (1 - ~ x ~ ( - ~ - ’ / ~ u ) [ c o s ( ~ - ’ / ~ u )  + ~ i n ( 2 - ’ / ~ ~ ] } .  

(5.12) 

(5.13) 

(5.14) 

It is apparent that the term proportional to e ~ p ( - 2 - ’ / ~ u )  tends to zero as t goes to 
infinity, while the other one diverges like t112. Hence we can say that the Markov limit 
of the Zwanzig equation gives asymptotically 

p + ( t )  = e x p [ - w ( 2 ~ ) - ’ / ~ t ~ / ~ ] .  (5.15) 

This asymptotics is obviously incorrect. 

(2.24) now becomes 

p + (  t )  = exp( -2wr-I lof dt’ lom dz sin( t ’ z ) z - 1 / 2 (  1 + z)-’ 

Now let us turn to the approximate convolutionless equation. Its formal solution 

(5.16) 

or 

dt’[exp(-it‘)r(f, - i t ’ )  -exp(it’)r(& it‘)] (5.17) 
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The exponent in (5.17) has a most difficult form, and any properties of p 4 ( t )  can be 
obtained from (5.17) only numerically. But we shall follow another way. Equation 
(5.16) is equivalent to 

p + (  t )  = exp ( - 4 w r - l  I,' dt '  loa dz sin( t'z2)( 1 + z2)-' (5.18) 

The innermost integral in (5.18) can, by a simple contour integration, be converted into 

Ioz dz sin( t'z2)( 1 + z2)-I = 2-"2 lom dz( 1 - z2) exp( - t 'z2)( 1 + z4)-' (5.19) 

and (5.18) now becomes 

) p + ( t )  =exp(  - 2 3 ' 2 ~ ~ - '  lom dz(1 -z2)[1 - e ~ p ( - t z ~ ) ] ( l + z ~ ) - ' z - ~  

which corresponds to 

d,p, ( t )  = -Z3'* w r - '  l o m d z ( l  -z2) exp(-tz2)(1+z4)-'p+(t). 

Note that for small z 

(5.20) 

(5.21) 

z-'[ 1 - exp( - tz2)] - t (5.22) 

and the integrand in (5.20) diverges for t + CO. Because 

~ o m d z ( ~ - z 2 ) e x p ( - ? z 2 ) ( l + z 4 ) ~ ' = 2 ~ 1 ~ 2  I: d u u - ' e ~ p ( - u t ) s i n h [ t ( 2 u - l ) ' ' ~ ]  (5.23) 

which is greater than zero for all t > 0 ,  we can conclude that pd(t) tends to zero 
monotonically as t goes to infinity. 

Note also that in this case the van Hove limit makes no sense, because in this limit 

) p + (  t )  = exp ( - 2 3 ' 2 ~ r - '  Ib; dz( 1 - z2 ) (  1 + z4)-' (5.24) 

but the integral in the above expression vanishes, and p 4 ( t )  turns out to be identically 
equal to one, which is unphysical. This may indicate a non-exponential behaviour of 
the approximate probability p + ( t )  (of course we already know that the exact p + ( t )  
does behave non-exponentially). Indeed, one can easily check that for any positive 
constant (Y 

lim [p,(t)/exp(-at)] =CO (5.25) 
1-m 

where p + ( t )  is given by any of the (equivalent) expressions (5.16), (5.17), (5.18) or 
(5.20). That means that any exponential function tends to zero faster that the solution 
of the approximate convolutionless master equation (5.21). 

We have seen that the exact convolutionless equation gives results identical to those 
obtained in a different way, and that the approximate Zwanzig equation gives results 
very close to the exact solution. The approximate convolutionless equation enables 
us to predict the asymptotic behaviour of the exact solution, too, though these predic- 
tions are not as good as those obtained from the approximate equation with a 
convolution. Unlikely in our first example, the Markov and van Hove limits give 
evidently incorrect long-time asymptotics. 
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6. Conclusions 

We think that the following ‘hierarchy’ of solutions of different master equations can 
be established. 

(i) The exact solution (2.19) of the exact convolutionless equation (2.17); to obtain 
this one has to solve (2.25) (or, alternatively, invert the transforms (2.21)), which can 
be very hard in the general case. This solution is also expected to satisfy the exact 
Zwanzig equation (3.6), but it seems impossible even to check this. 

(ii) The solution of the approximate Zwanzig equation (3.12), which is very likely 
to be very close to the exact one, but for the same reason solving (3.12) may prove to 
be as difficult as solving (2.25). 

(iii) The solution (2.24) of the approximate convolutionless equation (2.23), which 
is not as close to the exact solution as the Zwanzig approximation, but the behaviour 
of which can be predicted much easier than that of either exact or Zwanzig approximate 
solutions. 

(iv) Any further approximations, like the Markov limit of the Zwanzig equation 
or the van Hove limit of any solution. These procedures are not to be recommended 
because, as we have clearly seen in Q 5 ,  their predictions may prove to be completely 
wrong. 

These are conclusions which can be drawn from our investigations of the formalism 
of master equations applied to the Friedrichs model. We think they are quite general 
and can be extended to other areas investigated with master equations. The approximate 
convolutionless equation works reasonably well in different situations, and  we believe 
it may prove very useful on many occasions. On the other hand, the very popular 
formalism of master equations with a convolution is usually associated with the Markov 
or van Hove limits, which may obscure some interesting features of the dynamics of 
the system under consideration. Therefore, bearing in mind the extreme complexity 
of the Zwanzig formalism without the Markovian approximation, we wish to recom- 
mend the use of convolutionless equations whenever the existence of relevant super- 
operators can be proved. 
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